IB Mathematics HL SL-Maxima and Minima

In my previous post, we discussed how to find the equation of tangents and normal to a curve. There are a few more  Applications of Derivatives in IB Mathematics HL SL, ‘Maxima and Minima’ is one of them.

Maxima and Minima:-

1. A function f(x) is said to have a maximum at x = a if f(a) is greater than every other value assumed by f(x) in the immediate neighbourhood of x = a. Symbolically

 

\left. \begin{array}{l} f(a) > f(a + h)\\ f(a) > f(a - h) \end{array} \right] \Rightarrow x = a   gives maxima for a sufficiently small positive h.

Similarly, a function f(x) is said to have a minimum value at x = b if f(b) is least than every other value assumed by f(x) in the immediate neighbourhood at x = b. Symbolically

 

\left. \begin{array}{l} f(b) > f(b + h)\\ f(b) > f(b - h) \end{array} \right]  If x = b gives minima for a sufficiently small positive h.

 

<img src="IB Mathematics HL SL.jpg" alt="IB Mathematics HL SL">

Read more

Applications of Derivatives in IB Mathematics

Applications of Derivatives in IB

Mathematics-

In my previous post, we discussed how to find the derivative of different types of functions as well as the geometrical meaning of differentiation. Here we are discussing  Applications of Derivatives in IB Mathematics
There are many different fields for the Applications of Derivatives. We shall discuss a few of them-

Slope and Equation of tangents to a curve- If We draw a tangent to a curve y=f(x) at a given point   ({x_1},{y_1}), then

The gradient of the curve at given point=the gradient of the tangent line  at given  point

and we already discussed that slope or gradient of the tangent at given point   ({x_1},{y_1})

m=  {\frac{{dy}}{{dx}}_{at({x_1},{y_1})}}

=f'({x_1})

Finally to find the equation of tangent we use the slope-point form of equation

y - {y_1} = m(x - {x_1})

The major part of this concept is also discussed in the previous post. We should also remember following points while solving these types of questions.

(i) If two lines are parallel to each other, their slopes are always equal
i.e     {m_1} = {m_2}
(ii) If two lines are perpendicular to each other, the product of their  slopes is always -1

{m_1}.{m_2} = - 1

(iii) If a line is passing through two points   ({x_1},{y_1}) and  ({x_2},{y_2})  then, slope of the line

m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}

Read more

Continuity of functions-IB Maths topics

Continuity of functions-

The word continuous means without any break or gap. Continuity of functions exists when our function is without any break or gap or jump . If there is any gap in the graph, the function is said to be discontinuous.

Graph of functions like sinx,cosx, secx, 1/x etc are continuous (without any gap) while greatest integer function has a break at every point(discontinuous).

1. A function f(x) is said to be continuous at x = c,  if  {\lim }\limits_{x \to c} f(x) = f(c) .

 

symbolically f is continuous at x = c if  {\lim }\limits_{x \to c - h} f(c + h) = {\lim }\limits_{x \to c - h} f(c - h) = f(c).

 

It should be noted that continuity of a function at x = a is meaningful only if the function is defined in the immediate neighborhood of x = a, not necessarily at x = a.

<img src="continuous functions.png" alt="continuous functions">

Read more

How To Solve Limit Problems

How To Solve Limit Problems

 

In my previous post on limits, We have discussed some basic as well as advanced concepts of limits. Here we shall discuss different methods to solve limit questions. Based on the type of function, we can divide all our work into sections-:

Algebraic Limits- Problems of limits that involve algebraic functions are called algebraic limits. They can be further divided into following sections:-

Direct Substitution Method –Suppose we have to find. L = {\lim }\limits_{x \to a} f(x) we can directly substitute the value of the limit of the variable (i.e replace x=a) in the expression.

► If f(a) is finite then L=f(a)

► If f(a) is undefined then L doesn’t exist

► If f(a) is indeterminate  then this method fails

<img src="limit.png" alt="limit">

Example-1:- Find value of   {\lim }\limits_{x \to 2} (x²-5x+6) Read more

Limit, Continuity & Differentiability-IB Maths Topics

Limit of a function

Limit of a function f(x) is said to exist as, x \to a when

 {\lim }\limits_{x \to {a^ + }} f(x) = {\lim }\limits_{x \to {a^ - }} f(x) =   finite quantity.

 

 <img src="limit.png" alt="limit">

Fundamental Theorems On Limits :

Let    {\lim }\limits_{x \to {a^{}}} f(x) = l &   {\lim }\limits_{x \to {a^{}}} f(x) = l   If l & m exists then :

(i) f (x) ± g (x) = l ± m

 

(ii) f(x). g(x) = l. m

 

(iii)  {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}} = m  provided  m \ne 0

 

(iv)  {\lim }\limits_{x \to {a^{}}} kf(x) = k {\lim }\limits_{x \to {a^{}}} f(x)   where k is a constant.

 

(v)    {\lim }\limits_{x \to {a^{}}} f[g(x)] = f[ {\lim }\limits_{x \to {a^{}}} g(x)] = f(m)provided f is continuous at        g (x) = m

 

Standard Limits :

(a)  {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1 and {\lim }\limits_{x \to 0} \frac{{\tan x}}{x} = {\lim }\limits_{x \to 0} \frac{{{{\tan }^{ - 1}}x}}{x} = 1 {\lim }\limits_{x \to 0} \frac{{{{\sin }^{ - 1}}x}}{x} = 1 Where x is measured in radians

 

(b)  {\lim }\limits_{x \to 0} {(1 + x)^{\frac{1}{x}}}and {\lim }\limits_{x \to 0} {(1 + \frac{1}{x})^x} both are equal to e

 

(c) {\lim }\limits_{x \to a} f(x) = 1and {\lim }\limits_{x \to a} \theta (x) = \infty  then this will show that  {\lim }\limits_{x \to a} f{(x)^{ {\lim }\limits_{x \to a} \theta (x)}} = {e^{ {\lim }\limits_{x \to a} \theta (x)[f(x) - 1]}}

 

(d)  {\lim }\limits_{x \to a} f(x) = A > 0 and   {\lim }\limits_{x \to a} \theta (x) = B (a finite quantity) then    {\lim }\limits_{x \to a} f{(x)^{ {\lim }\limits_{x \to a} \theta (x)}} = {e^z}

 

where z= ^{ {\lim }\limits_{x \to a} \theta (x)\ln f(x)} = {e^{B\ln A}} = {A^B}

 

(e)  {\lim }\limits_{x \to 0} \frac{{{a^x} - 1}}{x} = \ln a where a>0. In particular  {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1

 

Indeterminant Forms:

\frac{0}{0},\frac{\infty }{\infty },0 \times \infty ,{0^\infty },{\infty ^0} etc are considered to be indeterminant values

We cannot plot \infty  on the paper. Infinity\infty is a symbol & not a number. It does not obey the laws of elementary algebra.

\infty +\infty =\infty

\infty ×\infty \infty

(a/\infty ) = 0 if a is finite v is not defined

a b =0,if & only if a = 0 or b = 0  and  a & b are finite.

Expansion of function like Binomial expansion, exponential & logarithmic expansion, expansion of sinx , cosx , tanx should be remembered by heart & are given below:

(i)  ex =1+x/1!+x3/3!+x4/4!……\infty

 

(ii)  ax=1+(xloga)/1!+ (xloga)2/2!+ (xloga)3/3!+ (xloga)4/4!+……….where a > 0

 

(iii)   ln(1-x)=x-x2/2+x3/3-x4/4……….    where -1 < x  1

 

(iv)  ln(1-x)=-x-x2/2-x3/3-x4/4……….     where  -1 x < 1

 

(v )  \sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}}.......

 

(vi) \cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}}.......

 

(v)  \tan x = x + \frac{{{x^3}}}{3} + \frac{{2{x^5}}}{{5!}} - ..........

 

In next post, I will discuss various types of limit problems, their solutions and L’ Hospital’s rule.In the meantime, you can solve these basic questions from this PDF. This PDF is for beginners only. I will post difficult and higher level questions in the next post on this topic

 LimitsExercises.pdf

In my second post on limits, you can learn how to solve different types of questions on limits
Here is the link

http://ibelitetutor.com/blog/how-to-solve-limit-problems/