Definite Integration-Topics in IB Mathematics

Definite Integration

In the previous post, we discussed indefinite integration. Now we shall discuss definite integration

► Definite Integration- We already know that   \int {f\left( x \right){\rm{ }}dx = g\left( x \right) + c}    \leftarrow  this c here is an integral constant. we are not sure about its value. This c is the reason we call this process indefinite integration. But suppose we do our integration between certain limits like:-

\int\limits_a^b {f(x)dx = \left[ {g(x) + c} \right]} _a^b   here a \to  lower limit while b \to  higher limit

\int\limits_a^b {f(x)dx = \left[ {g(b) + c} \right]} - \left[ {g(a) + c} \right]


You can clearly see that this function is independent of ‘c’. Means we can be sure about its value so this type of integration is called  Definite Integration.

►Definite Integration of a function f(x) is possible in [a,b] if f(x) is continuous in the given interval

►If f(x), the integrand, is not continuous for a given value of x then it doesn’t mean that g(x), the integral, is also discontinuous for that value of x.

► Definite integration of a function between given limits like     \int\limits_a^b {f\left( x \right)dx} \Rightarrow         Algebraic sum of areas bounded by the given curve f(x) and given lines x=a and x=b. That’s why the answer for definite integration problems is a single number.

► If \int\limits_a^b {f\left( x \right)dx} = 0 that shows a few things:-

(i) The lines between which area is bounded are co-incident(a=b)

(ii) Area covered above the x-axis=Area covered below the x-axis that means positive part of area and negative part of area is equal

(iii) there must be at least one solution/root to f(x) between x=a and x=b(this is something we study in ROLE’S THEOREM in detail)

► If given function f(x) is not continuous at x=c then we should write

\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^{{c^ - }} {f(x)dx} + \int\limits_{{c^ + }}^a {f(x)dx}

► If given function f(x) > or <0 in any given interval (a,b) then  \int\limits_a^b {f\left( x \right)dx} \Rightarrow  >0 or <0 in given interval (a,b)

► If given function f(x)  \ge  g(x) in the given interval (a,b) then    \int\limits_a^b {f(x)dx \ge } \int\limits_a^b {g(x) \ge } dx 

in the given interval

► If we integrate the given function f(x) in the given interval (a,b) then

\int\limits_a^b {f(x)dx \le } \left| {\int\limits_a^b {g(x) \ge } dx} \right| \le \int\limits_a^b {\left| {f(x)} \right|dx}

<img src="definite integration.jpg" alt="definite integration">

Some More Properties of Definite Integration:- Read more