Permutation and Combination

Permutations and Combinations-

‘Permutations and Combinations’ is the next post of my series Topics in IB Mathematics.It is very useful and interesting as a topic. It’s also very useful in solving problems of Probability. To understand Permutations and Combinations, we first need to understand Factorial.

Definition of Factorial-  If we multiply n consecutive natural numbers together, then the product is called factorial of n. Its shown by n! or by

for example :       n! = n(n - 1)(n - 2)(n - 3)..........3.2.1

Some Properties of Factorials-
(i) Factorials can only be calculated for positive integers at this level. We use gamma functions to define non-integer factorial that’s not required at this level
(ii) Factorial of a number can be written as a product of that number with the factorial of its predecessor    n! = n[(n - 1)(n - 2)(n - 3)..........3.2.1]

 = n(n - 1)!

(iii)  0! = 1  you can watch this video for the explanation.

Read more

How to solve trigonometric problems based on complimentary anngles?(concept-3)

IB Maths tutors give great importance to Trigonometry.

Trigonometry is one of the fascinating branches of Mathematics. It deals with the relationships among the sides and angles of a triangle.Word trigonometry was originated from the Greek word, where, ‘TRI‘ means Three‘GON‘ means sides and the ‘METRON’ means to measure. It’s an ancient and probably most widely used branch Mathematics. For basic learning, IB Maths Tutor divide trigonometry in two part:-

1. Trigonometry based on right triangles

2. Trigonometry based on non-right triangles.

Here, we are discussing trigonometry based on non-right triangles only.

In the third article of this series, we will discuss problems based on complementary angles

In the third article of this series, we will discuss problems based on complementary angles

<img src="right triangle.jpg" alt="right triangle">

In this right triangle Sin A=BC/AC & Cos C=BC/AC   clearly: Sin A=Cos C  In the given triangle A+C=90° so we can write C=(90°-A). This gives us freedom to write Sin A=Cos (90°-A) similarly we can write these relationships     Read more