## Permutations and Combinations-algebra tutors

### Permutations and Combinations(part-2)

In my previous post, we discussed the fundamental principle of counting and various methods of permutations. In this post, I shall discuss combinations in details.

Meaning of Combination- If we are given a set of objects and we want to select a few objects out of this set, then we can do it by many different ways. These ways are known as combinations.
Example- If we are given three balls marked as B, W and R and we want to select two balls then we can select like this- BW, BR, WR.

These are known as the combination of this selection.

Combination of n different objects taken r at a time when repetition is not allowed– If repetition is not allowed the number of ways of selecting r objects out of a group of n objects is called

=

In latest notation system   is also known as C(n;r) or

Properties of  – It’s a very useful and interesting Mathematical tool. It has following properties.

(i)

(ii)

(iii)      known as Pascal’s law

(iv) r.

(v)

(vi) If n is even then we should put r=n/2 for maximum value of   and if n is odd then   is greatest when r=

(vii) In the expansions of  if we put x=1 then

## Permutations and Combinations-

‘Permutations and Combinations’ is the next post of my series Topics in IB Mathematics.It is very useful and interesting as a topic. It’s also very useful in solving problems of Probability. To understand Permutations and Combinations, we first need to understand Factorial.

Definition of Factorial-  If we multiply n consecutive natural numbers together, then the product is called factorial of n. Its shown by n! or by

for example :

Some Properties of Factorials-
(i) Factorials can only be calculated for positive integers at this level. We use gamma functions to define non-integer factorial that’s not required at this level
(ii) Factorial of a number can be written as a product of that number with the factorial of its predecessor

(iii)    you can watch this video for the explanation.