How to find sum and product of zeros of equations

Find Sum And Product of Zeros of Equations

In the previous post, our IB Maths Tutors discussed how to solve a quadratic polynomial using the Quadratic formula. Here, I will tell you about different relationships based on the sum and product of quadratic polynomials, cubic polynomials, and bi-quadratic polynomials.

ib mathematics


ax2 + bx + c = 0

                                         Sum of the roots = −b/a

                                          The product of the roots = c/a

If we know the sum and product of the roots/zeros of a quadratic polynomial, then we can find that polynomial using this formula

x2 − (sum of the roots)x + (product of the roots) = 0


Now let us look at a Cubic (one degree higher than Quadratic):

ax3 + bx2 + cx + d=0

 if α, β and γ are the zeros of this cubic polynomial then

If we know these relationships of polynomials then we cal also calculate the polynomial using this formula:


If we are given a bi-quadratic polynomial with degree 4 like:

                                             ax 4+bx³+cx²+dx+e=0
                                and its roots/zeros are α, β, γ, and δ then
Using these formulas of sum and product of zeros of polynomials, we can find a lot of relationships in zeros of polynomials. Usually, we are asked to see these types of relationships in zeros.
Question: If α and β are the zeros of polynomial x²-px+q=0 then find the following relationships.
i) 1/α+1/β   ii) α²β+αβ²   iii) α²+β²    iv) α/β+β/α   v) α³+β³
Ans: To find these relationships, we convert every value either in sum (α+β)  or in the product (αβ) of zeros. For this conversion, we use the following Mathematical Tricks.

1)Try to take common
2) Try to take L.C.M

3) Try to make a Perfect Square

4) Use algebraic identities wherever required

If we use the above steps correctly, we can usually convert everything either to a sum or to a product of zeros.
If we compare the given equation with the std. form ax²+bx+c=0 then

                                                                       a=1, b=-p and c=q
                             sum of zeros α+β=-b/a=-(-p/a)=p

                             product of zeros    αβ=c/a=q/1=q                                                     (i) 1/α+1/β=β+α/αβ              [By L.C.M]

(ii) α²β+αβ²  = αβ(α+β)               [By common]
 (iii) α²+β² = (α²+β²+2αβ)-2αβ          [add and subtract 2αβ, make it a perfect square ]
(iv) α/β+β/α = β²+α²/βα          [By taking L.C.M]
we have already found β²+α² that is p²-2q so

(v) (α+β)³=(α+β)³-3αβ(α+β)                [Direct algebraic identity]

You can further read about quadratics in PDF(quadratics ) given here. There are a lot of practice questions given in this PDF

 Study IB Maths Online For free  by IB Maths Tutors

 Fill the form or Whatsapp us at +919911262206
 ib free demo class